魔改线性基
强制在线的做法,需要维护一个前缀的线性基,每次新加入数的时候,要把靠右边的数提到线性基的高位
这样维护的线性基,在查询区间异或和的时候,只需要把r为前缀的线性基出现为止大于l且异或之后和更大的数异或起来就行了,新套路!!
#include#define INF 0x3f3f3f3f#define full(a, b) memset(a, b, sizeof a)#define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)using namespace std;typedef long long LL;inline int lowbit(int x){ return x & (-x); }inline int read(){ int ret = 0, w = 0; char ch = 0; while(!isdigit(ch)){ w |= ch == '-', ch = getchar(); } while(isdigit(ch)){ ret = (ret << 3) + (ret << 1) + (ch ^ 48); ch = getchar(); } return w ? -ret : ret;}inline int lcm(int a, int b){ return a / __gcd(a, b) * b; }template inline A fpow(A x, B p, C lyd){ A ans = 1; for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd; return ans;}const int N = 1000005;int _, n, m, pos[N][32], l, r;LL b[N][32], val;int main(){ for(scanf("%d", &_); _; _ --){ scanf("%d%d", &n, &m); for(int i = 1; i <= n; i ++){ scanf("%lld", &val); for(int j = 0; j <= 31; j ++) b[i][j] = b[i - 1][j], pos[i][j] = pos[i - 1][j]; int cur = i; for(int j = 31; j >= 0; j --){ if(val & (1LL << j)){ if(!b[i][j]){ b[i][j] = val, pos[i][j] = cur; break; } else{ if(pos[i][j] < cur) swap(pos[i][j], cur), swap(b[i][j], val); val ^= b[i][j]; } } } } LL opt, l, r, cnt = n; LL val, ret = 0; while(m --){ scanf("%lld", &opt); if(opt == 0){ scanf("%lld%lld", &l, &r); l = (l ^ ret) % cnt + 1, r = (r ^ ret) % cnt + 1; if(l > r) swap(l, r); ret = 0; for(int i = 31; i >= 0; i --){ if(pos[r][i] >= l && (ret ^ b[r][i]) > ret) ret ^= b[r][i]; } printf("%lld\n", ret); } else{ scanf("%lld", &val); val ^= ret, cnt ++; for(int i = 0; i <= 31; i ++) b[cnt][i] = b[cnt - 1][i], pos[cnt][i] = pos[cnt - 1][i]; int cur = cnt; for(int i = 31; i >= 0; i --){ if(val & (1LL << i)){ if(!b[cnt][i]){ b[cnt][i] = val, pos[cnt][i] = cur; break; } else{ if(pos[cnt][i] < cur) swap(pos[cnt][i], cur), swap(b[cnt][i], val); val ^= b[cnt][i]; } } } } } for (int i=1;i<=n;++i) for (int j=30;j>=0;--j) b[i][j] = pos[i][j] =0; } return 0;}